algorithms-for-computing-li.../LinearRegressionTool/src/main/java/presenter/evaluation/EvaluateAlgorithms.java

547 lines
21 KiB
Java

package presenter.evaluation;
import model.Line;
import model.LineModel;
import model.Point;
import presenter.algorithms.advanced.LeastMedianOfSquaresEstimator;
import presenter.algorithms.advanced.RepeatedMedianEstimator;
import presenter.algorithms.advanced.TheilSenEstimator;
import presenter.algorithms.naiv.NaivLeastMedianOfSquaresEstimator;
import presenter.algorithms.naiv.NaivRepeatedMedianEstimator;
import presenter.algorithms.naiv.NaivTheilSenEstimator;
import presenter.util.IntersectionComputer;
import presenter.generator.DatasetGenerator;
import presenter.io.DataImporter;
import java.io.File;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Observable;
/**
* Implementierung verschiedener Algorithmen zur Berechnung von Ausgleichsgeraden.
*
* @Author: Armin Wolf
* @Email: a_wolf28@uni-muenster.de
* @Date: 01.08.2017.
*/
public class EvaluateAlgorithms extends Observable {
private LineModel arrangement;
private LinkedList<Line> lmsL;
private LinkedList<Line> rmL;
private LinkedList<Line> tsL;
private ArrayList<Point> lmsP;
private ArrayList<Point> tsP;
private Thread lmsThread;
private Thread rmThread;
private Thread tsThread;
private Double[] tsRes = new Double[2];
private Double[] rmRes = new Double[2];
private Double[] lmsRes = new Double[2];
private DatasetGenerator generator;
private String[][] names = {{"MSE", "RMSE", "MAE", "MDAE", "Steigung", "y-Achsenabschnitt", "S-MSE", "S-RMSE", "S-MAE", "S-MDAE", "Brute-force Steigung", "Brute-force y-Achsenabschnitt"}, {"MAPE", "MDAPE", "RMSPE", "RMDSPE", "Steigung", "y-Achsenabschnitt"}};
//übergebene Parameter
private int type;
private int iterations;
private int alg;
/**
* Konstruktor zur evaluation
*
* @param type Typ der evaluation
* @param n Größe des Datensatzes
* @param alg 0 = lms,
* 1 = rm,
* 2 = ts,
* 3 = lms, rm,
* 4 = lms, ts,
* 5 = rm, ts,
* 6 = lms, rm, ts,
* @param datasettyp typ der zu generierenden Datensatz
*/
public EvaluateAlgorithms(int type, int n, int alg, String datasettyp) {
this.arrangement = new LineModel();
generator = new DatasetGenerator();
switch (datasettyp) {
case "Punktwolke":
arrangement.setLines(generator.generateDataCloud(n));
break;
case "Gerade":
arrangement.setLines(generator.generateDataLines(n));
break;
case "Kreis und Gerade":
arrangement.setLines(generator.generateCircle(n));
break;
}
this.type = type;
this.iterations = n;
this.alg = alg;
//IntersectionCounter counter = new IntersectionCounter();
//counter.run(arrangement.getLines(), new Interval(-99999, 99999));
//counter.calculateIntersectionAbscissas(arrangement);
IntersectionComputer computer = new IntersectionComputer(arrangement.getLines());
arrangement.setNodes(computer.compute());
lmsL = new LinkedList<>(arrangement.getLines());
rmL = new LinkedList<>(arrangement.getLines());
tsL = new LinkedList<>(arrangement.getLines());
lmsP = new ArrayList<>(arrangement.getNodes());
tsP = new ArrayList<>(arrangement.getNodes());
}
/**
* Konstruktor zur evaluation
*
* @param type Typ der evaluation
* @param alg 0 = lms,
* 1 = rm,
* 2 = ts,
* 3 = lms, rm,
* 4 = lms, ts,
* 5 = rm, ts,
* 6 = lms, rm, ts,
* @param file Datei die importiert werden soll
*/
public EvaluateAlgorithms(int type, int alg, File file) {
this.arrangement = new LineModel();
DataImporter importer = new DataImporter(file);
LinkedList<Line> importedLines = importer.run();
if (importedLines != null)
arrangement.setLines(importedLines);
this.type = type;
this.alg = alg;
//IntersectionCounter counter = new IntersectionCounter();
//counter.run(arrangement.getLines(), new Interval(-99999, 99999));
//counter.calculateIntersectionAbscissas(arrangement);
IntersectionComputer computer = new IntersectionComputer(arrangement.getLines());
arrangement.setNodes(computer.compute());
lmsL = new LinkedList<>(arrangement.getLines());
rmL = new LinkedList<>(arrangement.getLines());
tsL = new LinkedList<>(arrangement.getLines());
lmsP = new ArrayList<>(arrangement.getNodes());
tsP = new ArrayList<>(arrangement.getNodes());
}
/**
* Startet die Evaluation zu den passenden Typ. Bei beendigung wird der Beobachter informiert.
* @throws InterruptedException
*/
public void run() {
setChanged();
String[] msg = {"eval-dataset-generated"};
notifyObservers(msg);
ArrayList<String> result;
ArrayList<ArrayList<String>> multipleResults = new ArrayList<>();
switch (type) {
case 0:
//der alg der gewählt wurde
if (alg == 0) {
final double[] m = new double[1];
final double[] b = new double[1];
Thread t = new Thread(() -> {
NaivLeastMedianOfSquaresEstimator l = new NaivLeastMedianOfSquaresEstimator(arrangement.getLines());
l.run();
m[0] = l.getM();
b[0] = l.getB();
});
t.start();
try {
startLMS();
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
result = getScaleDependentMeasure(arrangement.getLines(), lmsRes[0], lmsRes[1]);
result.addAll(getScaledErrorBasedMeasure(arrangement.getLines(), lmsRes[0], lmsRes[1], m[0], b[0]));
Double[] tmp = {lmsRes[0], lmsRes[1], m[0], b[0]};
sendPlotLineResults(tmp, 0);
} else if (alg == 1) {
final double[] m = new double[1];
final double[] b = new double[1];
Thread t = new Thread(() -> {
NaivRepeatedMedianEstimator r = new NaivRepeatedMedianEstimator(arrangement.getLines());
r.run();
m[0] = r.getM();
b[0] = r.getB();
});
t.start();
try {
startRM();
} catch (InterruptedException e) {
e.printStackTrace();
}
result = getScaleDependentMeasure(arrangement.getLines(), rmRes[0], rmRes[1]);
result.addAll(getScaledErrorBasedMeasure(arrangement.getLines(), rmRes[0], rmRes[1], m[0], b[0]));
Double[] tmp = {rmRes[0], rmRes[1], m[0], b[0]};
sendPlotLineResults(tmp, 1);
} else {
final double[] m = new double[1];
final double[] b = new double[1];
Thread t = new Thread(() -> {
NaivTheilSenEstimator ts = new NaivTheilSenEstimator(arrangement.getLines());
ts.run();
m[0] = ts.getM();
b[0] = ts.getB();
});
t.start();
try {
startTS();
} catch (InterruptedException e) {
e.printStackTrace();
}
result = getScaleDependentMeasure(arrangement.getLines(), tsRes[0], tsRes[1]);
result.addAll(getScaledErrorBasedMeasure(arrangement.getLines(), tsRes[0], tsRes[1], m[0], b[0]));
Double[] tmp = {tsRes[0], tsRes[1], m[0], b[0]};
sendPlotLineResults(tmp, 2);
}
sendTableApproximationTypes();
sendTableApproximationData(result, alg);
break;
case 1:
ArrayList<Double[]> lineRes;
switch (alg) {
case 3:
try {
startLMS();
startRM();
} catch (InterruptedException e) {
e.printStackTrace();
}
result = getPercentigeErrorBasedMeasure(arrangement.getLines(), lmsRes[0], lmsRes[1]);
multipleResults.add(result);
result = getPercentigeErrorBasedMeasure(arrangement.getLines(), rmRes[0], rmRes[1]);
multipleResults.add(result);
result = fillPseudoResults();
multipleResults.add(result);
lineRes = new ArrayList<>();
lineRes.add(lmsRes);
lineRes.add(rmRes);
sendPloteLineResults(lineRes, new Integer[]{0, 1});
break;
case 4:
try {
startLMS();
startTS();
} catch (InterruptedException e) {
e.printStackTrace();
}
result = getPercentigeErrorBasedMeasure(arrangement.getLines(), lmsRes[0], lmsRes[1]);
multipleResults.add(result);
result = fillPseudoResults();
multipleResults.add(result);
result = getPercentigeErrorBasedMeasure(arrangement.getLines(), tsRes[0], tsRes[1]);
multipleResults.add(result);
lineRes = new ArrayList<>();
lineRes.add(lmsRes);
lineRes.add(tsRes);
sendPloteLineResults(lineRes, new Integer[]{0, 2});
break;
case 5:
try {
startRM();
startTS();
} catch (InterruptedException e) {
e.printStackTrace();
}
result = fillPseudoResults();
multipleResults.add(result);
result = getPercentigeErrorBasedMeasure(arrangement.getLines(), rmRes[0], rmRes[1]);
multipleResults.add(result);
result = getPercentigeErrorBasedMeasure(arrangement.getLines(), tsRes[0], tsRes[1]);
multipleResults.add(result);
lineRes = new ArrayList<>();
lineRes.add(rmRes);
lineRes.add(tsRes);
sendPloteLineResults(lineRes, new Integer[]{1, 2});
break;
case 6:
try {
startLMS();
startRM();
startTS();
} catch (InterruptedException e) {
e.printStackTrace();
}
result = getPercentigeErrorBasedMeasure(arrangement.getLines(), lmsRes[0], lmsRes[1]);
multipleResults.add(result);
result = getPercentigeErrorBasedMeasure(arrangement.getLines(), rmRes[0], rmRes[1]);
multipleResults.add(result);
result = getPercentigeErrorBasedMeasure(arrangement.getLines(), tsRes[0], tsRes[1]);
multipleResults.add(result);
lineRes = new ArrayList<>();
lineRes.add(lmsRes);
lineRes.add(rmRes);
lineRes.add(tsRes);
sendPloteLineResults(lineRes, new Integer[]{0, 1, 2});
break;
}
sendTableApproximationData(multipleResults);
break;
}
}
/**
* Die berechneten Ergebnisse werden an den Beobachter übermittelt um dann visualisiert zu werden.
* @param result Ergebnisse
* @param col Spalte
*/
public void sendTableApproximationData(ArrayList<String> result, int col) {
ArrayList<String> tableInput = new ArrayList<>();
tableInput.add("eval-d");
tableInput.add("" + col);
for (int i = 0; i < names[type].length; i++) {
tableInput.add(result.get(i));
}
tableInput.add("");
setChanged();
notifyObservers(tableInput.stream().toArray(String[]::new));
tableInput.clear();
}
/**
* Die berechneten Ergebnisse werden an den Beobachter übermittelt um dann visualisiert zu werden.
* @param result Ergebnisse
*/
public void sendTableApproximationData(ArrayList<ArrayList<String>> result) {
ArrayList<String> tableInput = new ArrayList<>();
//iteration über die ApproximationsGüten -- Zeilen
for (int j = 0; j <= result.get(0).size(); j++) {
tableInput.add("eval-ds");
if (j != result.get(0).size()) {
tableInput.add(names[type][j]);
//iteration über die alg. -- Spalten
for (int i = 0; i < 3; i++) {
tableInput.add(result.get(i).get(j));
}
} else {
tableInput.add("");
tableInput.add("");
tableInput.add("");
tableInput.add("");
}
setChanged();
notifyObservers(tableInput.stream().toArray(String[]::new));
tableInput.clear();
}
}
/**
* Die Art der Ergebnisse (MSE, RMSE,...) wird an der Beobachter übermittelt.
*/
public void sendTableApproximationTypes() {
ArrayList<String> tableInput = new ArrayList<>();
tableInput.add("eval-t");
tableInput.add("" + 0);
for (int i = 0; i < names[type].length; i++) {
tableInput.add(names[type][i]);
}
tableInput.add("");
setChanged();
notifyObservers(tableInput.stream().toArray(String[]::new));
tableInput.clear();
}
/**
* Zur visualisierung der berechneten Geraden wird die Steigung und der y-Achsenabschnitt an den
* Beobachter übermittelt.
* @param res Feld mit den Werten für die Steigung und dern y-Achsenabschnitt
* @param alg code für welchen Algorithmus sich die Werte beziehen
*/
public void sendPlotLineResults(Double[] res, int alg) {
//visualisiere m,b
ArrayList<String> lines = new ArrayList<>();
lines.add("lines-res");
lines.add("" + alg);
//lms res
for (int i = 0; i < res.length; i++) {
lines.add(res[i] + "");
}
setChanged();
notifyObservers(lines.stream().toArray(String[]::new));
}
/**
* Zur visualisierung der berechneten Geraden wird die Steigung und der y-Achsenabschnitt an den
* Beobachter übermittelt.
* @param res Feld mit den Werten für die Steigung und dern y-Achsenabschnitt (alle)
* @param algs codes für welchen Algorithmus sich die Werte beziehen (alle)
*/
public void sendPloteLineResults(ArrayList<Double[]> res, Integer[] algs) {
ArrayList<String> lines = new ArrayList<>();
lines.add("lines-res-mult");
for (int i = 0; i < algs.length; i++) {
lines.add("" + algs[i]);
//lms res
Double[] tmp = res.get(i);
lines.add(tmp[0] + "");
lines.add(tmp[1] + "");
}
setChanged();
notifyObservers(lines.stream().toArray(String[]::new));
}
/**
* Startet die Berechnung des Alg. zum LMS-Schätzer
* @throws InterruptedException
*/
public void startLMS() throws InterruptedException {
lmsThread = new Thread(() -> {
LeastMedianOfSquaresEstimator lmsAlg = new LeastMedianOfSquaresEstimator(lmsL, lmsP);
lmsAlg.run();
lmsAlg.pepareResult();
lmsRes[0] = lmsAlg.getSlope();
lmsRes[1] = lmsAlg.getyInterception();
});
lmsThread.start();
lmsThread.join();
}
/**
* Startet die Berechnung des Alg. zum RM-Schätzer
* @throws InterruptedException
*/
public void startRM() throws InterruptedException {
rmThread = new Thread(() -> {
RepeatedMedianEstimator rmAlg = new RepeatedMedianEstimator(rmL);
rmAlg.run();
rmAlg.pepareResult();
rmRes[0] = rmAlg.getSlope();
rmRes[1] = rmAlg.getyInterception();
});
rmThread.start();
rmThread.join();
}
/**
* Startet die Berechnung des Alg. zum TS-Schätzer
* @throws InterruptedException
*/
public void startTS() throws InterruptedException {
tsThread = new Thread(() -> {
TheilSenEstimator tsAlg = new TheilSenEstimator(tsL, tsP);
tsAlg.run();
tsAlg.pepareResult();
tsRes[0] = tsAlg.getSlope();
tsRes[1] = tsAlg.getyInterception();
});
tsThread.start();
tsThread.join();
}
/**
* Startet die Berechnung der skalierungsabbhängigen Maße.
* @param lines Liste der Geraden
* @param m Steigung
* @param b y-Achsenabschnitt
* @return Liste mit den Ergebnissen, bereit zum visualisieren
*/
public ArrayList<String> getScaleDependentMeasure(final LinkedList<Line> lines, final Double m, final Double b) {
ScaleDependentMeasure scaleDependentMeasure = new ScaleDependentMeasure(lines, m, b);
ArrayList<String> ret = new ArrayList<>();
ret.add(scaleDependentMeasure.mse().toString());
ret.add(scaleDependentMeasure.rmse().toString());
ret.add(scaleDependentMeasure.mae().toString());
ret.add(scaleDependentMeasure.mdae().toString());
ret.add(m.toString());
ret.add(b.toString());
return ret;
}
/**
* Startet die Berechnung der Maße die auf dem prozentualen Fehler basieren.
* @param lines Liste der Geraden
* @param m Steigung
* @param b y-Achsenabschnitt
* @return Liste mit den Ergebnissen, bereit zum visualisieren
*/
public ArrayList<String> getPercentigeErrorBasedMeasure(final LinkedList<Line> lines, final Double m, final Double b) {
PercentageErrorBasedMeasure percentageErrorBasedMeasure = new PercentageErrorBasedMeasure(lines, m, b);
ArrayList<String> ret = new ArrayList<>();
ret.add(percentageErrorBasedMeasure.mape().toString());
ret.add(percentageErrorBasedMeasure.mdape().toString());
ret.add(percentageErrorBasedMeasure.rmspe().toString());
ret.add(percentageErrorBasedMeasure.rmdspe().toString());
ret.add(m.toString());
ret.add(b.toString());
return ret;
}
/**
* Startet die Berechnung der skalierungsunabbhängigen Maße.
* @param lines Liste der Geraden
* @param m Steigung
* @param b y-Achsenabschnitt
* @return Liste mit den Ergebnissen, bereit zum visualisieren
*/
public ArrayList<String> getScaledErrorBasedMeasure(final LinkedList<Line> lines, final Double m, final Double b, final Double nM, final Double nB) {
ScaledErrorBasedMeasure scaledErrorBasedMeasure = new ScaledErrorBasedMeasure(lines, m, b, nM, nB);
ArrayList<String> ret = new ArrayList<>();
ret.add(scaledErrorBasedMeasure.mse().toString());
ret.add(scaledErrorBasedMeasure.rmse().toString());
ret.add(scaledErrorBasedMeasure.mae().toString());
ret.add(scaledErrorBasedMeasure.mdae().toString());
ret.add(nM.toString());
ret.add(nB.toString());
return ret;
}
/**
* Damit es bei der Visualisierung trennende Zeilen gibt.
* @return
*/
private ArrayList<String> fillPseudoResults() {
ArrayList<String> result = new ArrayList<>();
result.add(" ");
result.add(" ");
result.add(" ");
result.add(" ");
result.add(" ");
result.add(" ");
return result;
}
/**
* @return Liste der Geraden auf der die Berechnungen ausgeführt wurden
*/
public LinkedList<Line> getData() {
return arrangement.getLines();
}
}